Linear Second Order Ordinary Differential Equations with Nonsmooth Coefficients
نویسندگان
چکیده
منابع مشابه
Singular Eigenvalue Problems for Second Order Linear Ordinary Differential Equations
We consider linear differential equations of the form (p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A) on an infinite interval [a,∞) and study the problem of finding those values of λ for which (A) has principal solutions x0(t;λ) vanishing at t = a. This problem may well be called a singular eigenvalue problem, since requiring x0(t;λ) to be a principal solution can be considered as a boundary co...
متن کاملLecture 18: Ordinary Differential Equations: Second Order
2. General Remarks Second order ODEs are much harder to solve than first order ODEs. First of all, a second order linear ODE has two linearly independent solutions and a general solution is a linear combination of these two solutions. In addition, many popular second order ODEs have singular points. Except for a few cases, the solutions have no simple mathematical expression. However, there is ...
متن کاملOn the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملOn the Hyper-order of Solutions of Second Order Linear Differential Equations with Meromorphic Coefficients
In this paper, we investigate the growth of solutions of the linear differential equation 0 = Bf f A f , where ) (z A and 0) )( ( z B are meromorphic functions. More specifically, we estimate the lower bounded of hyperorder of solutions of the equation with respect to the conditions of ) (z A and 0) )( ( z B if solutions 0 ( f ) of the equation is of infinite order. keywords: ...
متن کاملSecond order linear differential equations with generalized trapezoidal intuitionistic Fuzzy boundary value
In this paper the solution of a second order linear differential equations with intuitionistic fuzzy boundary value is described. It is discussed for two different cases: coefficient is positive crisp number and coefficient is negative crisp number. Here fuzzy numbers are taken as generalized trapezoidal intutionistic fuzzy numbers (GTrIFNs). Further a numerical example is illustrated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1997
ISSN: 0022-247X
DOI: 10.1006/jmaa.1997.5418